# Center For Extended Magnetohydrodynamic Modeling

S. C. Jardin for the CEMM consortium

Presentation to the Fusion SciDAC PAC
August 3, 2001
PPPL

CEWW.

#### The CEMM Consortium:



GA: D.Schissel

LANL: (T. Gianakon, R. Nebel)?

MIT: L. Sugiyama

**NYU:** H. Strauss

**PPPL:** J. Breslau, G. Fu, S. Hudson, S.Jardin, W. Park

SAIC: S. Kruger, D. Schnack

U. Colorado: C. Kim, S. Parker

**U.Texas:** F. Waelbroeck

U.Wisconsin: J. Callen, C. Hegna, C. Sovinec

Utah State: E. Held

#### Outline



- CEMM Background and Motivation
- PSACI Progress
- SciDAC Activity Areas
- CSET Partners
- Application Areas
- Resource Distribution and Task List

## Background



- "...to <u>develop</u> and <u>deploy</u> predictive computational models for the study of low frequency, long wavelength fluid-like dynamics in the diverse geometries of modern magnetic fusion devices."
- High programmatic motivation:
  - disruptions, sawteeth, current, and beta limits
- Need for improved plasma models:
  - FLR, anisotropy, long MFP
- Need for improved computational techniques:
  - Extreme separation of time and space scales, and extreme anisotropy
  - Efficiency, visualization, data base management, code support
- **NIMROD** and **M3D** codes form basis: build on these assets

#### **Experimental Observations**





Modes "lock" to wall

#### **Model Requirements**

- Realistic geometry
- Realistic parameters
- Long time-scales
- Realistic boundaries
- Anisotropic heat flux
- Neoclassical effects
- Two-fluid effects
- Kinetic extensions
- Energetic particles





$$\begin{split} \frac{\partial \vec{B}}{\partial t} &= -\nabla \times \vec{E} \\ \vec{E} + \vec{V} \times \vec{B} &= \eta \vec{J} \\ &+ \frac{1}{ne} \Big[ \vec{J} \times \vec{B} - \nabla \bullet P_e \, \Big] \\ \mu_0 \vec{J} &= \nabla \times \vec{B} \\ P &= pI + \Pi \end{split}$$

$$\begin{aligned} \rho(\frac{\partial \vec{V}}{\partial t} + \vec{V} \bullet \nabla \vec{V}) &= \nabla \bullet P + \vec{J} \times \vec{B} + \mu \nabla^{2} \vec{V} \\ \vec{V} \times \vec{B} &= \eta \vec{J} & \frac{\partial \rho}{\partial t} + \nabla \bullet (\rho \vec{V}) = S_{M} \\ + \frac{1}{ne} \left[ \vec{J} \times \vec{B} - \nabla \bullet P_{e} \right] & \frac{3}{2} \frac{\partial p}{\partial t} + \nabla \bullet \left( \vec{q} + \frac{5}{2} P \bullet \vec{V} \right) = \vec{J} \bullet \vec{E} + S_{E} \\ &= \nabla \times \vec{B} \\ pI + \Pi & \frac{3}{2} \frac{\partial p_{e}}{\partial t} + \nabla \bullet \left( \vec{q}_{e} + \frac{5}{2} P_{e} \bullet \vec{V}_{e} \right) = \vec{J} \bullet \vec{E} + S_{E} \end{aligned}$$

Two-fluid XMHD: define closure relations for  $\Pi_i$ ,  $\Pi_e$ ,  $q_i$ ,  $q_e$ 

Hybrid particle/fluid XMHD: model ions with kinetic equations, electrons either fluid or by drift-kinetic equation

#### **Simulation Codes:**



NIMROD: semi-implicit time integration, 2D quad and triangular finite elements+ pseudospectral, grid packing, AZTEC, MPI

M3D: quasi-implicit time integration, stream-function/potential representation, 3D Mesh, PETSc, MPI



### Required Resources



| parameter          | name       | CDXU  | NSTX              | CMOD  | DIII-D | FIRE  | ITER              |
|--------------------|------------|-------|-------------------|-------|--------|-------|-------------------|
| R(m)               | radius     | 0.3   | 0.8               | 0.6   | 1.6    | 2.0   | 5.0               |
| Te[keV]            | Elec Temp  | 0.1   | 1.0               | 2.0   | 2.0    | 10    | 10                |
| β                  | beta       | 0.01  | 0.15              | .02   | 0.04   | 0.02  | 0.02              |
| $S^{1/2}$          | Res. Len   | 200   | 2600              | 3000  | 6000   | 20000 | 60000             |
| (ρ*) <sup>-1</sup> | Ion num    | 40    | 60                | 400   | 250    | 500   | 1200              |
| a/\lambda e        | skin depth | 250   | 500               | 1000  | 1000   | 1500  | 3000              |
| P                  | Space-time | ~1010 | ~10 <sup>13</sup> | ~1014 | ~1014  | ~1015 | ~10 <sup>17</sup> |

Estimate P ~  $S^{1/2}$  (a/ $\lambda$ e)<sup>4</sup> for uniform grid explicit calculation. Adaptive grid refinement, implicit time stepping, and improved algorithms will reduce this.

#### Progress on PSACI Workscope:



- ✓ Series of Test Problems
  - Ideal MHD,
  - Resistive MHD,
  - 2-fluid,
  - Hot-Particle TAE
- ✓ Resistive Wall Mode
- ✓ Stellarator Physics
- ✓ Linear Solver Improvement
- ✓ Scaling to Large Processor Number
- ✓ Common Interfaces
- ✓ Data Management
- ✓ Visualization

#### Hot Particle Test Case





- M3D agrees well with NOVA-2 in linear regime
- NIMROD still adding hybrid-particle option
- Expect to have M3D/NIMROD comparison by APS

Fu

#### 2-Fluid Test Case

#### m=1 mode growth





Sugiyama



- M3D agrees with Zahkarov/Rodgers analytic model
- NIMROD getting different result – destabilizing rather than stabilizing
- Trying to isolate difference..model or bug?

#### Resistive Wall Modes:





- Resistive wall boundary conditions are being incorporated in both NIMROD and M3D using (same) GRIN module.
- Tearing mode unstable sheared slabs used for benchmarking saturate at a larger island width with the non-ideal (resistive) wall.

  Gianakon

#### **Stellarator Physics:**





- NCSX design examined for flux surface quality and non-linear stability
- ullet Issues associated with accuracy and resistive ballooning for  $D_R$  unstable configurations
- Stellarator capability now in MPP version

**Strauss** 

#### Neoclassical Tearing Mode





- Analytic-based closure now in NIMROD ohms law
- Gives good agreement with theory for stability boundary
- Now concentrating on sawtooth trigger

Gianagon

### **CEMM Activity Areas:**



- Code Development
- Model Development
- Visualization and Data Management
- CSET Collaborations
- Code Support
- Applications and Validations

## Code Development



- Expanded use of Implicit Techniques
  - Implicit treatment of the Hall term and advective terms
  - Incorporate gyroviscosity free of time step restriction
  - Optimize parallel algorithms for elliptic terms
- Kinetic Closures for majority species
  - Trajectory tracking in non-uniform and unstructured mesh
  - Implementing  $\delta f$  /CEL closures into efficient time advance
- Improved and adaptive meshing
  - Improved and generalized mesh generation
  - Implement a field-aligned mesh
  - Implement mesh adaptivity

### Model Development



- Kinetic Modeling Framework
  - $-\delta f$  with evolving Maxwellian
  - Simulation Particles or Chapman-Enskog-Like expansion
- Kinetic Modeling of Ions through Simulation Particles
  - Heat flux and stress tensor computed from particle moments
- Kinetic Modeling of Electrons through CEL closure
  - Basis functions used to solve gyro-averaged drift-kinetic equations
  - Small parameter is the small parallel gradients
  - Parallel integrations similar to simulation-particle tracking

#### Visualization and Data Management



- Evaluate, build-on, and expand pilot project started under PSACI funding
  - Store NIMROD and M3D data in MDSplus
  - Track runs using SQL server
  - AVS and IDL based visualization packages
  - Efficiency issues
- Develop higher dimensional data exploration tools
  - Find correlations
  - Visualize subspaces
  - Find data characterized by a particular formula

## Computer Science Enabling Technology Partners



- Terascale Simulation Tools and Technologies (TSTT) PI: James Glimm
- Terascale Optimal PDE Simulations Center (TOPS) PI: David Keyes
- An Algorithmic and Software Framework for Applied Partial Differential Equations
   Pl: Phil Collela
- National Fusion Collaboratory Pilot project
   PI: David Schissel

NOTE: also collaborations with major fusion experiments

## Terascale Simulation Tools and Technology (TSTT)



- Incorporation of "standard" grid generation and discretization libraries into M3D (and possibly NIMROD)
- Higher order and mixed type elements
- Explore combining potential and field advance equations
- Prof. Glimm visited PPPL in February
- Mark Shephard (Director of Renssalaer Scientific Computation Research Center), Joe Flaherty (now Dean of RPI School of Science), and Jean-Francois (RPI RA with MHD and fusion interest and experience) to visit PPPL Aug 6
- Tim Tautges (SNL/U.Wisconsin) participated in CEMM meeting Aug 1 in Madison

#### Terascale Optimal PDE Simulations (TOPS) Collaboration



- Extend the sparse matrix solvers in PETSc in several ways that will improve the efficiency of M3D
  - Develop multilevel solvers for stiff PDE systems
  - Addition of nonlinear Schwarz domain decomposition
  - Refinements in implementation to improve cache utilization
- David Keyes and Barry Smith primary contacts
- Keyes visited Princeton on June 6
- M3D team visited Smith at Argonne in January
- Jardin on TOPS "Advisory Council"
- Jardin to attend briefing on CEMM at Aug 20 meeting in Argonne

#### An Algorithmic and Software Framework for Applied Partial Differential Equations



Implement and evaluate adaptive mesh refinement (AMR)
 for reconnection and localized instability growth

- Phil Colella, Project leader, visited PPPL in Spring
- Focus on adaptive mesh refinement
- Fusion one of three project areas
- New PPPL hire (with MICS SciDAC funds) from Cal Tech. CFD ASCI center
- Jardin on PAC



### **Fusion Collaboratory**



- Develop more efficient integration of experiment and modeling
- Easier access to simulation codes
- Enhancements in communication capabilities for shared code development projects
- Scientific visualization, access grid, display wall
- D. Schissel, project director, also part of CEMM
- C. Sovinec (UW/NIMROD/CEMM) on oversight committee

#### **Code Applications**



- Neoclassical Tearing Modes in Tokamaks
  - Seed island, saturation level, active stabilization
- Edge Localized Modes
  - Predict nature of ELM for given parameters
- Burning Plasma MHD
  - m=1 (sawtooth), TAE and fishbone, NTM
- Relaxation in RFPs and Spheromaks
  - Effect of XMHD on relaxation processes
- Stellarator Stochasticity and Stability
  - Existance of surfaces, non-linear stability
- Basic-Physics Applications
  - Magnetic reconnection, accretion-disk, wave-particle interaction

## Neoclassical Tearing Modes in Tokamaks





- Build on PSACI work
- Seed Island
- Dependence of saturation level on model
- active stabilization

#### m=1 mode in hot plasmas





- better predictive model of m=1 mode is needed for burning plasma
- also a high priority issue for ST..can lead to IRE
- recent JET
   discharges with
   zero central current
   density show
   n=0,m=1

## m=1 internal mode in NSTX agrees qualitatively with data







Park

## Application to RFP concentrating now on looking for coherent states





Results from a) toroidal geometry and b) periodic linear geometry with  $P_m=10, R/a=1.75, \Theta=1.8.$ 

#### Quasi-Axisymmetric Stellarator





- Ballooning mode develops in li383 when design pressure exceeded
- nonlinear steepening of ribbons
- resistive ballooning also being studied for  $D_R > 0$





- \$150 K SAIC
- \$ 90 K University of Wisconsin
- \$ 90 K PPPL
- \$ 60 K University of Colorado
- \$ 40 K MIT
- \$ 40 K NYU
- \$ 30 K GA
- ? LANL
- \$ 0 K U. Utah
- \$ 0 K U.Texas





- Move the M3D two-fluid/anisotropic pressure level to MPP architecture and apply to tokamaks and ST's.
- Develop MPP architecture energetic particle module for both M3D and NIMROD, and apply to TAE and fishbone modes in tokamaks and ST's.
- Implement parallel non-Hermitian matrix solves in NIMROD.
- Modeling efforts will resolve what form of gyroviscosity is most appropriate and develop the CEL-based stress tensor for electrons.
- Expand the M3D MPP mesh module by incorporating field-line-following mesh and carry out stellarator MHD simulations.





- Develop M3D MPP mesh for modeling separatrix and apply to ELMs.
- Continue development of two-fluid-level closure schemes for axisymmetric and non-axisymmetric systems; apply to neoclassical physics in stellarators.
- Apply energetic particle/MHD hybrid level to stellarators
- Implement majority ion  $\delta f$  computation and closure based on simulation particles.
- Implement the majority electron closures based on CEL.
- The Hall and gyroviscous advances in NIMROD will be changed to use the non-Hermitian matrix capability, improving the time advance algorithm.

#### Year 3 task list (in proposal):



- Work on adaptive mesh refinement methods and apply to global simulations that contain near-singular structures such as reconnection layers.
- Further development of multi-fluid closures, including higher order moments and parallel dynamics.
- Incorporate bulk ion particles in MPP: apply to tokamaks, ST, stellarators.
- Implement collisional effects in the simulation-particle  $\delta f$  to address distribution function filamentation.
- Analyze the efficacy of semi-implicit approaches used with CEL closures, addressing the stiffness associated with electron parallel
- Incorporate implicit advection for the fluid part of the algorithm.